

Wasserstoff: Erdgasersatz und Speichermedium

- I. Vorstellung der LEKA MV und der Kampagne MVeffizient
- II. Nutzung von Wasserstoff im Unternehmen
- III. Fördermittel für die Nutzung und die Erzeugung von Wasserstoff

VORSTELLUNG

Arne Rakel

Dipl.-Ing. (FH) Maschinenbau (Energietechnik) Technischer Berater Landesenergie- und Klimaschutzagentur MV

Tel.: 0385 3031640 Mobil: 0152 54770610

E-Mail: <u>arne.rakel@leka-mv.de</u>

- Energieauditor DIN EN 16247-1
- Contracting-Orientierungsberater EBN/BAFA
- Energieeffizienzberater EBL/BLE

I. Vorstellung der LEKA MV und der Kampagne MVeffizient

EINE KAMPAGNE DER LEKA

Zeitraum:

April 2018 - Juni 2023

Zielgruppe:

Alle Unternehmen in MV

Ziel:

Energieeffizienzsteigerung in Unternehmen Energie/Kosten/CO₂ sparen

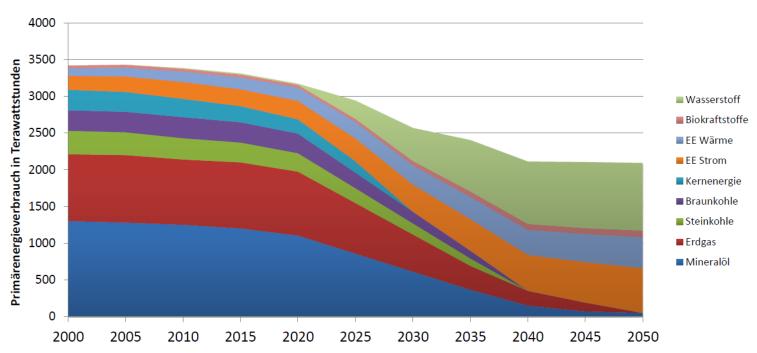
Maßnahmen:

Kostenlose Erst- und Initialberatung Vor-Ort-/Online-/Hybrid-Stammtische Fördermittelinformation

BERATUNGSPFAD

BERATUNGSINHALTE

- Energieverbrauch erfassen (Monitoring)
- 2. THG-Bilanzen/CSR-Bericht
- 3. Identifizierung und Verringerung der Verluste
- 4. Erneuerbare Energiequellen (Sonne, Erde, Wind)
- 5. Speichersysteme für Wärme und Strom
- 6. E-Mobilität und LIS im Unternehmen
- 7. Contracting Energieeffizienz vom Dienstleister
- 8. Wasserstoffnutzung Speicher oder Gasersatz
- 9. PPA-Energielieferverträge



II. Nutzung von Wasserstoff in Unternehmen

BLICK IN DIE GLASKUGEL

Prognose über den Energiemix bis 2050

Quelle: AG Energiebilanzen, dena, asue

DEKARBONISIERUNG

Ziel:

 CO₂₋Emission reduzieren durch Dekarbonisierung

Maßnahmen:

- Ersatz von grauem Wasserstoff durch grünen Wasserstoff in der Industrie
- Speicherung von volatiler
 Erneuerbarer Energie und
 Rückverstromung
- Ersatz von fossilen Energieträgern in Energiewirtschaft, Wärmeversorgung und Verkehr

Quelle: Umweltbundesamt

WASSERSTOFFKLASSEN

Grauer Wasserstoff:

Wasserstoff aus fossilen Kohlenwasserstoffen (z. B. Erdgaseformierung)

Blauer Wasserstoff:

Wasserstoff aus Dampfreformierung (Erdgas) mit CO₂-Abscheidung und -speicherung

Türkiser Wasserstoff:

Wasserstoff aus der thermischen Spaltung von Methan (Methanpyrolyse), Anstelle von CO₂ entsteht dabei fester Kohlenstoff

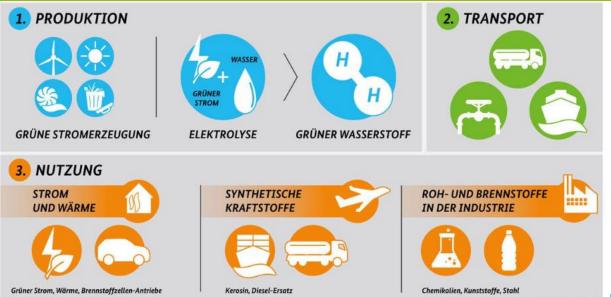
Grüner Wasserstoff:

Wasserstoff aus Strom von erneuerbarer Energien

Quelle: BMWK

RECHTLICHE RAHMENBEDINGUNGEN

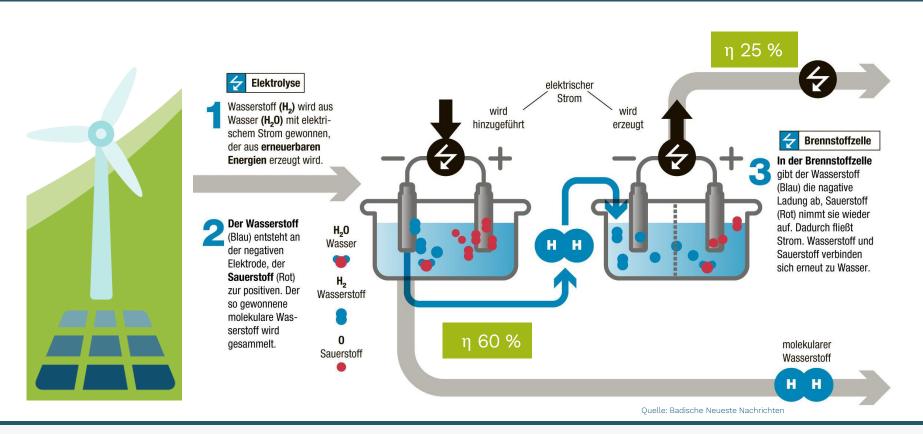
EEG § 3 Nr. 27a


"Grüner Wasserstoff"

Wasserstoff, der nach Maßgabe der Verordnung nach § 93 elektrochemisch durch den Verbrauch von Strom aus erneuerbaren Energien hergestellt wird, wobei der Wasserstoff zur Speicherung oder zum Transport auch in anderen Energieträgern chemisch oder physikalisch gespeichert werden kann

EFFIZIENZ IST DOCH ENTSCHEIDEND

Alles was wir nutzen, bedingt Energieverbrauch und Emissionen


- Flächen
- Ressourcen
- Transport
- Speicherung
- Nutzung

Quelle: BMBF 2020

Wirkungsgrad = Ressourcenbelastung und Gerechtigkeit

GRÜNER WASSERSTOFF

ENERGIEDICHTE

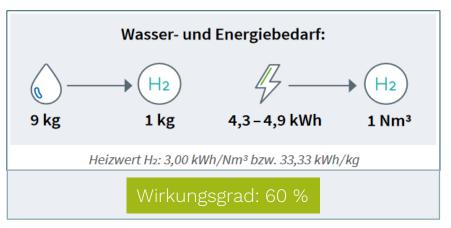
Energiedichte von Wasserstoff

Pro Masse: 33,33 kWh/kg

- Methan: 13,9 kWh/kg - Benzin: 12 kWh/kg

Pro Volumen: 3,0 kWh/Nm³

- Methan: 9,97 kWh/Nm³ - Benzin: 8.800 kWh/m³


- 12 m³ unverdichteter Wasserstoff entsprechen 1 l Benzir
- 1 kg Wasserstoff enthält so viel Energie wie 3 kg Benzin

Quelle: Quantum Technologies

WASSER- UND ENERGIEBEDARF

Zur Erzeugung von Wasserstoff mit einem Energiegehalt/Heizwert von 1 kWh im Elektrolyseverfahren, werden ca. **300 ml Wasser** und **1,6 kWh elektrischer Strom** benötigt.

Quelle: BDEW | Swen Gottschall

ANWENDUNGSBEREICHE

Elektrolyse von grünem Wasserstoff aus Überschuss EE

Strommarkt

Speicher für fluktuierende erneuerbare Energien Sonne & Wind

• flüssig oder gasförmig

Rückverstromung

- Brennstoffzelle
- (GUD-Kraftwerke)

Differenzen zwischen Angebot und Nachfrage kompensieren

Wärmemarkt

Beimischung Erdgasinfrastruktur

- Dichtheit
- Materialverträglichkeit
- Heizwert
- Messweise

Industrie

Dekarbonisierung von nicht-elektrifizierbaren Prozessen

- Stahlerzeugung
- Ammoniakproduktion

Chemische Industrie

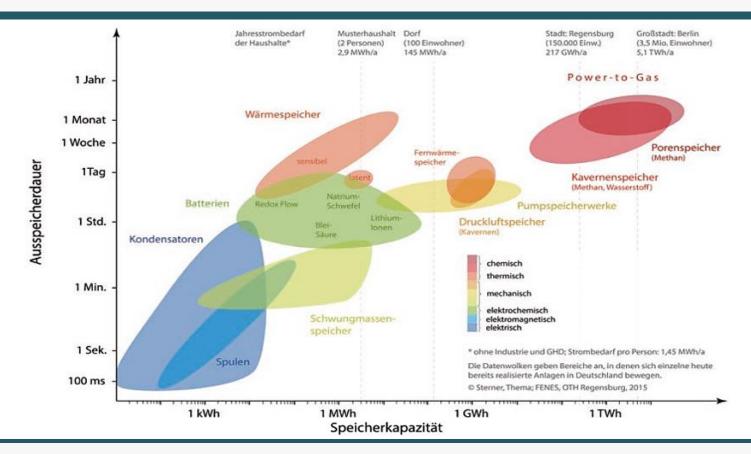
- Stickstoffdünger
- Raffinierung von Mineralöl

Mobilität

Schifffahrt

Synthetische Flugkraftstoffe

Schwerlastverkehr


- Brennstoffzelle
- Beimischung
- Direktverbrennung

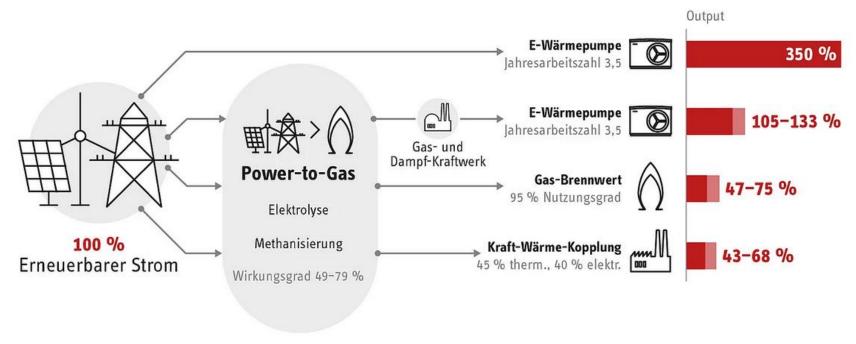
Ersatz fossiler Brennstoffe

Dieser Überschuss an EE muss kontinuierlich vorliegen!

WASSERSTOFF ALS LANGZEIT-ENERGIESPEICHER

Quelle: Sterner/Stadler 2017

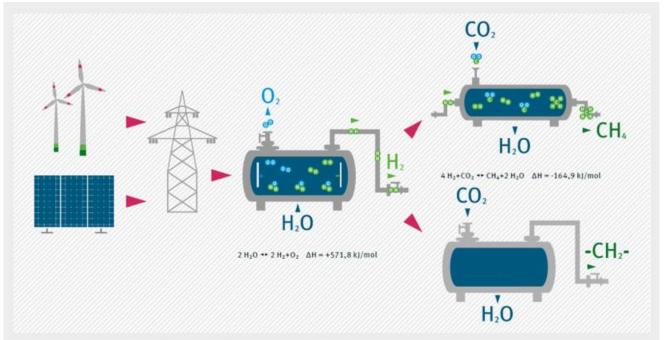
WASSERSTOFF UND SEKTORENKOPPLUNG



Quelle: cleanenergypartnership.de

EFFIZIENZVERGLEICH IM WÄRMEBEREICH

Wirkungsgrade in Bezug auf den eingesetzten erneuerbaren Strom



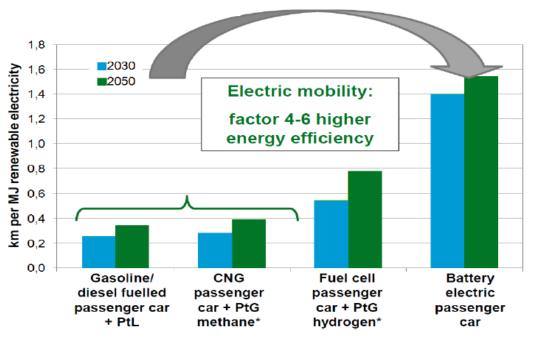
Quelle: Bundesverband Wärmepumpen

POWER-TO-GAS UND POWER-TO-LIQUID

Schematische Funktionsweise von PtG und PtL

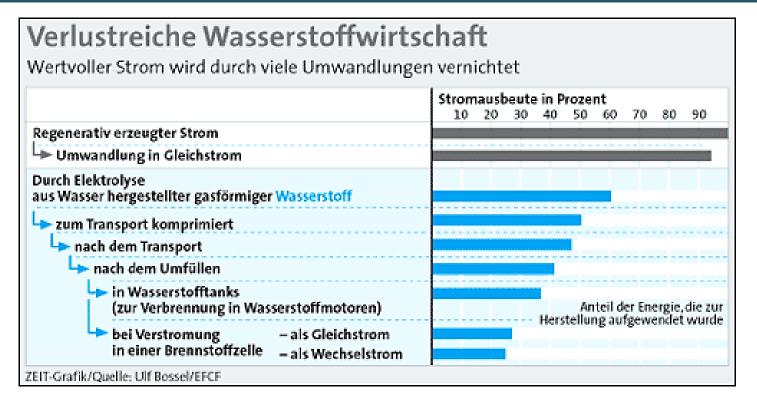
Quelle: Umweltbundesamt

HERSTELLUNG VON SNG AUS GRÜNEM WASSERSTOFF



ENERGIEFFIZIENZ MOBILITÄT

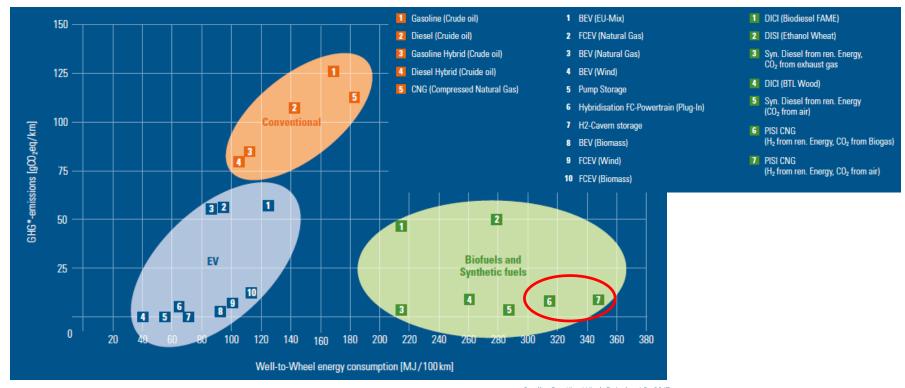
Reichweite eines Mittelklasse-PKW in 2030/2050 mit 1 MJ erneuerbarem Strom


- Ein PKW kann mit 5 kg Wasserstoff etwa 600 km zurücklegen.
- Zur Produktion von einer Tonne "grünen" Stahls werden rund 70 kg Wasserstoff benötigt

Legend:
* compressed

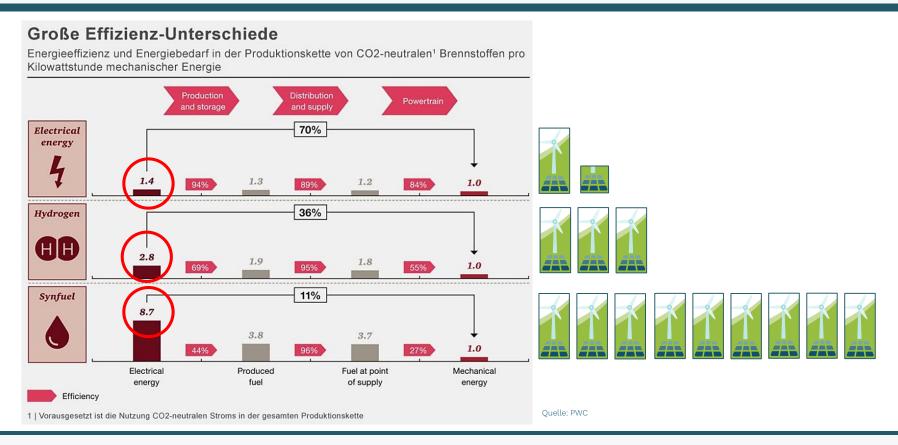
Quelle: Umweltbundesamt/INFRAS/Quantis 2015

EFFIZIENZ RÜCKVERSTROMUNG



Quelle: Agenda 21 Treffpunkt

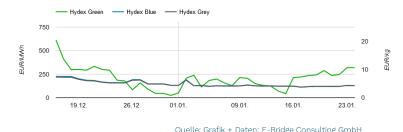
BILANZ ENERGIE UND CO₂ EMISSIONEN



Quelle: Dr. Jörg Wind, Daimler AG 2017

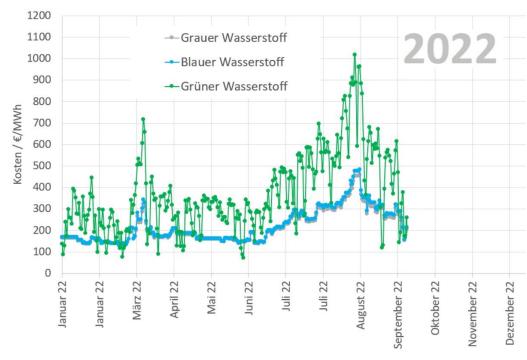
EFFIZIENZ - ELEKTRO - H2 - SYNFUELS

WIRTSCHAFTLICHE RAHMENBEDINGUNGEN


Kosten 24.01.2023

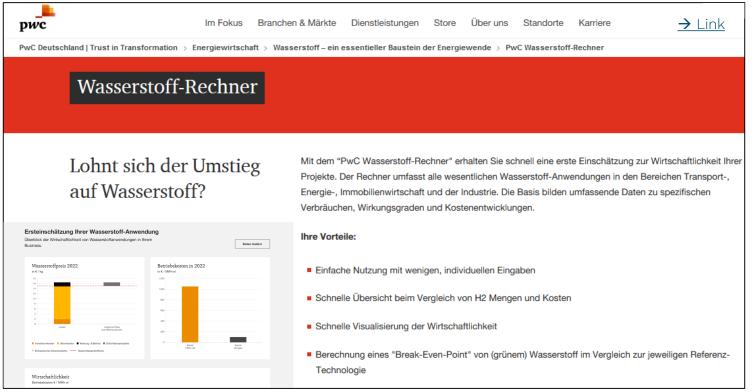
Hydex Green 318,98 €/MWh

Hydex Grey 126,88 €/MWh


Hydex Blue 127,58 €/MWh

Hydex (Preisindex) letzte 30 Tage

Einflüsse: Wetter, Marktpreis Gas, Nachfrage


Hydex (Preisindex) 2022

Quelle: Grafik: ASUE 2022 | Daten: E-Bridge Consulting GmbH

WIRTSCHAFTLICHKEITSRECHNER

Quelle: PWC

Salzgitter AG

→ Stahlproduktion

Grüner Wasserstoff soll zukünftig die Kohle ersetzen, die derzeit im konventionellen Hochofenprozess verwendet wird.

- 7 Windkraftanlagen (30 MW)
- weltweit größter Hochtemperatur-Elektrolyseur (Betriebstemperatur: 850 °C)
- Nutzung von Wasserdampf aus der Abwärme der Stahlproduktion Wirkungsgrad von 84 Prozent
- Förderung durch Bundesregierung

Quelle: Salzgitter AG

Arcelor Mittal

- → Bis 2035 sollen Stahl und Roheisen am Standort Bremen klimaneutral hergestellt werden!
- Rostocker Apex Group mit Bau eines Elektrolyseurs mit einer Leistungsaufnahme von 10 Megawatt am Standort Bremen beauftragt
- 2024 soll die Anlage in Betrieb gehen und den Stahlriesen mit grünem Wasserstoff beliefern
- Die Stadt Bremen finanziert das Projekt zu ca. 50 Prozent mit Fördermitteln.

Quelle: Arcelor Mittal/Werk Bremen

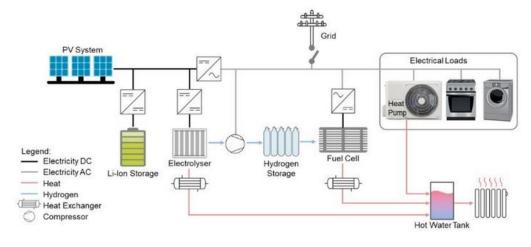
ENERTRAG AG - Grüne Wasserstofferzeugung für Industrie, Wärme und Mobilität

- → Hybridkraftwerk mittels Elektrolyse

 Seit 2011 erzeugt ENERTRAG in einem Hybridkraftwerk
 mittels Elektrolyse aus Windstrom grünen Wasserstoff.

 Dieser wird in das lokale Gasnetz eingespeist, um
 Endkunden mit Wärme zu versorgen.
- Betankung von PKWs und Bussen
- Bereitstellung von Energie auch bei Windstille
- Abfüllung von Gasflaschen zur Versorgung von Notstromaggregaten auf Basis von Brennstoffzellentechnologie

Elektrolyseur des Hybridkraftwerks der ENERTRAG in Prenzlau. © ENERTRAG photo



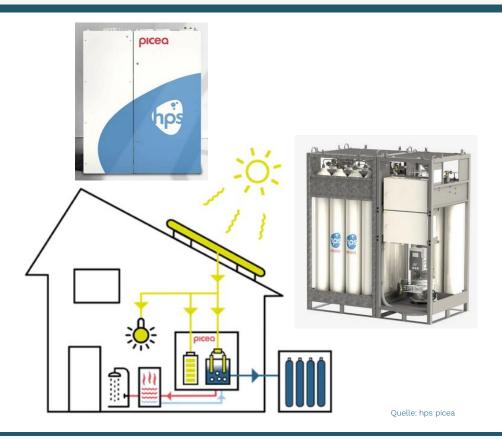
Uni Paderborn entwirft Photovoltaik + Speicher + Wasserstoffsysteme für autonome Energieversorgung von Gebäuden

→ Gebäudeenergieversorgung

System besteht aus:

- 6,8 kWp Photovoltaik-Anlage,
- 5 kW Elektrolyseur,
- 1,24 kW Brennstoffzellensystem,
- Batteriespeicher.

Quelle: PV Magazine


Home Power Solutions: Picea

Kurzzeitspeicher Tag | Nacht

Mit der bewährten Batterie-Technologie wird der Solarstrom vom Tag gespeichert und am Abend nutzbar gemacht. Am Tag lädt die Sonne die Batterie, damit auch am Abend genug Sonnenstrom zur Verfügung steht.

Langzeitspeicher Sommer | Winter

Um den im Winter fehlenden Solarertrag auszugleichen, verwendet picea Wasserstoff (H₂). picea nutzt Stromüberschüsse im Sommer, um aus Wasser Wasserstoff zu produzieren. Im Winter wird dieser Prozess umgekehrt und aus Wasserstoff wird wieder Strom gewonnen. Die Speicherung und Nutzung erfolgt komplett emissionsfrei.

Ostermeier H2ydrogen Solutions mit modularem Elektrolyseur für private und gewerbliche Anwendungen

- → Hybridkraftwerk mittels Elektrolyse von PV-Strom
- Elektrolyseur arbeitet mit Leitungswasser, mit Flaschen zur Speicherung von Wasserstoff und einer Brennstoffzelle oder einem Wankelmotor zur Stromerzeugung
- Das System hat eine Leistung von 1 bis 100 Kilowatt, was einer Wasserstoffproduktion von 0,2 bis 20 Normkubikmetern pro Stunde entspricht.
- Kosten ab 160.000 Euro

ELEKTROLYSEANLAGEN

Investmentgruppe Exceed übernimmt Energieunternehmen Apex

Blick auf das 2MW-Wasserstoffkraftwerk der APEX Group in Laage. Foto

© Bernd Wüstneck/dpa-Zentralbild/dpa/Archivbild

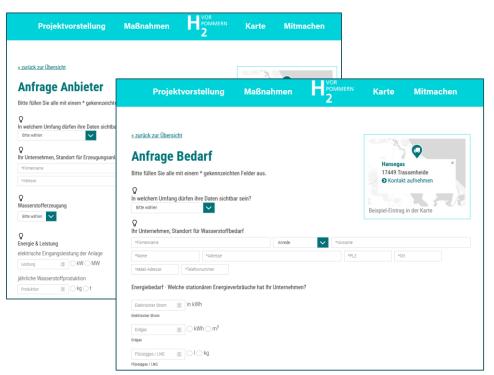
- Erste LKW-Wasserstofftankstelle in MV
- 2 auf 25MW + 100 MW neu
- 7.500 t/a Wasserstoff
- Vermarktung per Pipeline oder chemisch gebunden in flüssigem Wasserstoffträger (Ameisensäure)
- Gesamt-Projektpipeline von aktuell 50 Projekten mit einer Elektrolysekapazität von 1,7 Gigawatt
- Investitionsvolumen von 199 Mio. Euro sollen wiederkehrende Umsätze von jährlich 45 Mio. Euro erzielen
- 1 von 4 IPCEI-Projekten in MV

BESCHAFFUNG VON WASSERSTOFF

Stiftung H2 Global

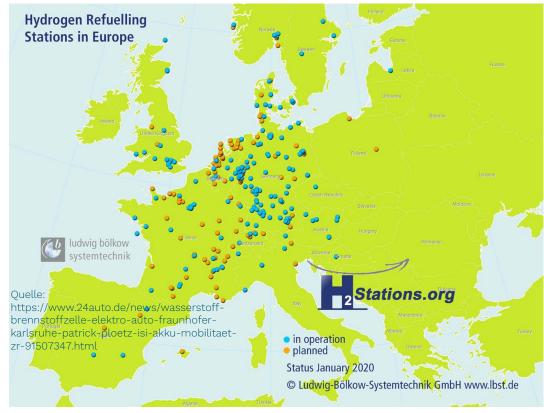
- Weltweiter Einkauf von H₂
- H2Global stellt H₂ Unternehmen zur Verfügung
- Kauf und Verkauf erfolgen im Bieterverfahren – die Differenz zahlt der Bund (Budget: 900 Mio. Euro) bereit
- 2024 sind die ersten Lieferungen geplant
- > 50 Unternehmen Mitglied: Rostock Port, Arcelor Mittal, Salzgitter AG, MAN, Daimler Truck usw.

Quelle: H2Global Advisory GmbH


BESCHAFFUNG VON WASSERSTOFF

H2 Vorpommern

- → Nutzung des Überangebots an erneuerbarem Strom in MV für den Aufbau einer Wasserstoffwirtschaft
- Abfrage: Interesse und Energiebedarf für eine mögliche Wasserstoffversorgung
- Bedarf oder Angebot von H₂ anmelden

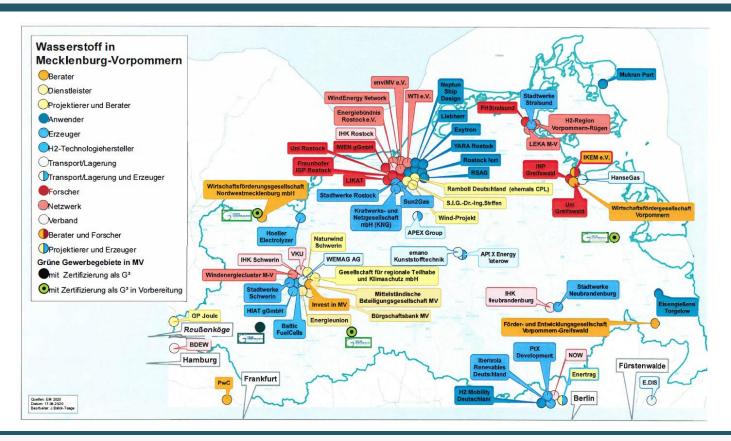


Quelle: Energie Vorpommern GmbH

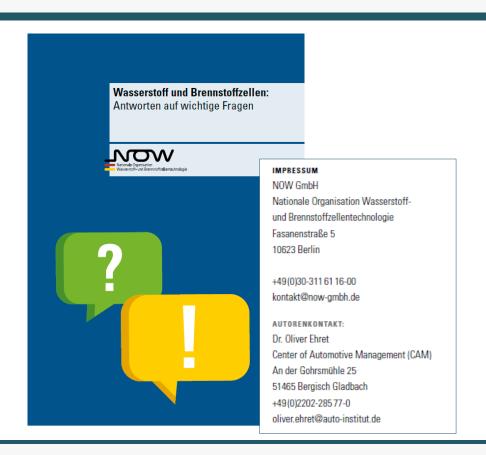
WASSERSTOFF TANKSTELLEN 2020

IPCEI PROJEKTE

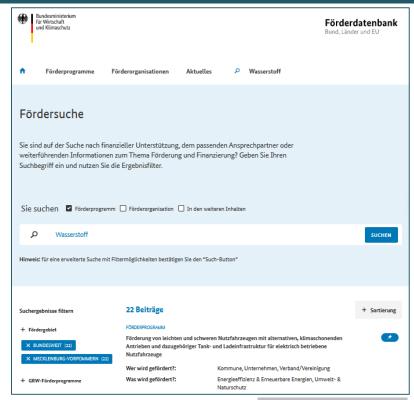
- Projekt: LIKAT Leibniz-Institut für Katalyse e.V. diverse Projekte, z.B. Light2Hydrogen


Quelle: IHK Nord

Quelle: BMWi

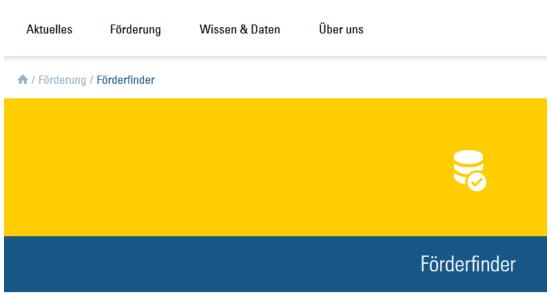

STAKEHOLDER IN MV

NACHSCHLAGEWERKE



III. Fördermittel für die Nutzung und die Erzeugung von Wasserstoff

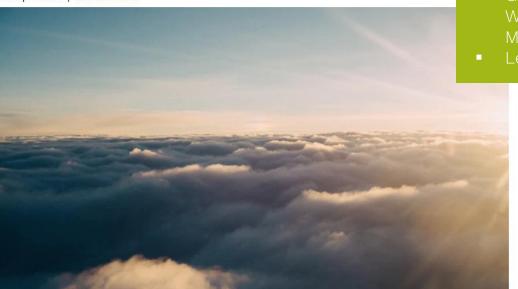
FÖRDERDATENBANKEN


→ Link: <u>DIHK</u>

→ Link: <u>Förderdatenbank</u>

FÖRDERFINDER NOW

- → NOW Nationale Organisation Wasserstoff- und Brennstoffzellentechnologie
- → NIP Nationale Innovationsprogramm Wasserstoff- und Brennstoffzellentechnologie


→ Link: <u>NOW - Förderfinder</u>

ALLES GRÜN?

Studie zeigt unerwartetes Wasserstoff-Problem: So beeinflusst es das Klima

24. April 2022 | Tobias Stahl

Wasserstoff kann in der Atmosphäre bis zu elfmal stärkere Liane Metzler/Unsplash.com Erderwärmungseffekte hervorrufen wie CO2, rechnet eine Studie der britischen Regierung vor.

Global Warming Potential 11
 Wasserstoff hemmt den
 Methanabbau in der Atmosphäre

Leckagerate 1-10 % = kritisch

Quelle: efahrer.chip.de

KONTAKT

Vereinbaren Sie einen kostenlosen Beratungstermin in Ihrem Betrieb!

Technische Beratung Energieeffizienz und Klimaschutz

Dipl.-Ing. (FH) Arne Rakel Telefon: 0385 3031640 Handy: 0152 54770610

E-Mail: arne.rakel@leka-mv.de

www.mv-effizient.de | info@mv-effizient.de

Vielen Dank für Ihre Aufmerksamkeit!

Eine Kampagne der:

Gefördert durch:

Im Auftrag von:

